An introduction to 5G architecture and use cases

Ahmed Elmokashfi Simula Metropolitan CDE

Summer School in Future Energy Information Networks September 7th 2018

sim

The focus has so far been on supporting voice, data and better spectral efficiency

Generation	Spectral efficiency (bps/Hz)
1G	0.064
2G	0.17-0.45
3G	0.51 – 4.22
4G	7.3 - 30

3

Src:Clarke RN. Expanding mobile wireless capacity: The challenges presented by technology and economics. Telecommunications Policy. 2014 Sep 1;38(8-9):693-708.

The GSM Family - Delivering on Promises

Source: Wireless Intelligence, June, 2009

NEARLY TWO DECADES OF PROVEN TECHNOLOGY AND EXPERIENCE

GSMA,

However, no substantial architectural innovations since 2G

Mobile traffic is expected to grow to 49 exabytes per month by 2021

The number of connected devices is projected to grow by 50% from 8 to 12 billions

5G vision

5G realization

Challenging use cases: The smart grid as an example

5G aims to cater for services with diverse requirements

Source: Teyeb et. al. "Evolving LTE to fit the 5G future". Ericsson Technology Review, 2017.

Use case category	User Experienced Data Rate	E2E Latency	Mobility
Broadband access in	DL: 300 Mbps	10 ms	On demand,
dense areas	UL: 50 Mbps		0-100 km/h
Indoor ultra-high	DL: 1 Gbps,	10 ms	Pedestrian
broadband access	UL: 500 Mbps		
Broadband access in	DL: 25 Mbps	10 ms	Pedestrian
a crowd	UL: 50 Mbps		
50+ Mbps everywhere	DL: 50 Mbps	10 ms	0-120 km/h
	UL: 25 Mbps		
Ultra-low cost	DL: 10 Mbps	50 ms	on demand: 0-
broadband access for	UL: 10 Mbps		50 km/h
low ARPU areas			
Mobile broadband in	DL: 50 Mbps	10 ms	On demand, up
vehicles (cars, trains)	UL: 25 Mbps		to 500 km/h
Airplanes connectivity	DL: 15 Mbps per user	10 ms	Up to 1000
	UL: 7.5 Mbps per user		km/h
Massive low-	Low (typically 1-100 kbps)	Seconds to hours	on demand: 0-
cost/long-range/low-			500 km/h
power MTC			
Broadband MTC	See the requirements for the Broadba	and access in dense are	as and 50+Mbps
	everywhere categories		
Ultra-low latency	DL: 50 Mbps	<1 ms	Pedestrian
	UL: 25 Mbps		
Resilience and traffic	DL: 0.1-1 Mbps	Regular	0-120 km/h
surge	UL: 0.1-1 Mbps	communication: not	
		critical	
Ultra-high reliability &	DL: From 50 kbps to 10 Mbps;	1 ms	on demand: 0-
Ultra-low latency	UL: From a few bps to 10 Mbps		500 km/h
Ultra-high availability	DL: 10 Mbps	10 ms	On demand, 0-
& reliability	UL: 10 Mbps		500 km/h
Broadcast like	DL: Up to 200 Mbps	<100 ms	on demand: 0-
services	UL: Modest (e.g. 500 kbps)		500 km/h

Source: 5G White Paper. NGMN Alliance, 2015

5G timeline (I)

5G timeline (II)

5G vision

5G realization

Challenging use cases: The smart grid as an example

Key enabling technologies

Innovative radio technologies mmWave, flexible frames, ...

THINGS

NB-IoT, eMTC

* source: Heavy Reading: Service-Oriented 5G Core Networks

Network Slicing

5G overall architecture

5G will have several deployment scenarios

Lien, Shao-Yu, et al. "5G new radio: Waveform, frame structure, multiple access, and initial access." IEEE communications magazine 55.6 (2017): 64-71.

The core network will witness the most radical innovation since 2G

Point-to-Point reference architecture

The core network will witness the most radical innovation since 2G

Service-Based architecture

SDN separates the control and data planes and allows for network programmability

Source: Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76.

NFV decouples software implementation of network functions from hardware

ETSI NFV reference architecture

Source: <u>https://www.etsi.org/technologies-clusters/technologies/nfv</u> Han, Bo, et al. "Network function virtualization: Challenges and opportunities for innovations." IEEE Communications Magazine 53.2 (2015): 90-97.

NFV has several open challenges

- Performance
 - A carrier grade performance is expected
- Management
 - Heterogenous physical resources
- Reliability and stability
 Efficient monitoring and control
- Security
 - Third party VNFs

5G Radio must support a wide range of frequencies and spectrum types

Low bands below 1 GHz: longer range for e.g. mobile broadband and massive IoT

Mid bands 1 GHz to 6 GHz: wider bandwidths for e.g. eMBB and mission-critical

High bands above 24 GHz (mmWave): extreme bandwidths

Licensed Spectrum Exclusive use Shared Spectrum New shared spectrum paradigms

Unlicensed Spectrum Shared use

LTE supports carrier bandwidth up to 20 MHz with fixed OFDM numerology

LTE FDD Frame 1.4 MHZ, Normal CP

OFDM sub-carriers are spaced by 15 kHz Resource block is fixed to 180 kHz in frequency and 1 slot long in time

In 5G-NR OFDM sub-carrier spacing will scale with the channel bandwidth

$$\Delta f = 2^{\mu} \cdot 15 \ kHz$$

	Cyclic Prefix	Δf = 2 ^μ ·15 kHz	μ
	Normal	15 kHz	0
∽ Data < 6 GHz	Normal	30 kHz	1
	Normal, Extended	60 kHz	2
\sim Data > 6 GHz	Normal	120 kHz	3
Specified b	Normal	240 kHz	4
not supporte	Normal	480 kHz	5
in Rel- 15			

Variable length slot duration helps in supporting URLLC use cases

Keysight. Understanding the 5G NR Physical Layer. Nov 2017

Mobile-IoT must be scalable, energy efficient and ubiquitous

Long battery life

Low device cost

Low deployment cost

Extended coverage

Support for many devices

User security, control & service API

IoT applications, however, have diverse requirements

Shorter to medium battery life Medium coverage Some mobility Latency in order of seconds Battery life 5-10 years Ubiquitous outdoor coverage Some mobility Medium to high reliability Latency < 10 seconds

Battery life 10-15 years Outdoor and deep indoors (+20dB) Stationary Medium to high reliability Latency 10 to 60 seconds Mains powered Outdoor and indoors Stationary low to high reliability Latency < 30 seconds

Future IoT applications will have stricter reliability and latency requirements

Factory automation

Intelligent transportation systems

Smart grids

Latency: 0.25 to 10ms PLR: 10E-9 Latency: 10 to 100ms PLR: 10E-3 to 10E-5 Latency: 3 to 20ms PLR: 10E-6

PLR: Packet Loss Rate

Schulz, Philipp, et al. "Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture." IEEE Communications Magazine 55.2 (2017): 70-78.

3GPP Release 13 standardized two solutions for current and future IoT

	NB-IoT LTE Cat. NB	eMTC LTE Cat. M1
Deployment	In-Band LTE, guard- band LTE and standalone	In-Band LTE
Bandwidth	180 KHz	1.08 MHz
Peak data rate	~150 kbps	1 Mbps
Latency	1.6s-10 s	10-15 ms
Max UE tx power	23 or 20 dBm	23 or 20 dBm
Power Saving	PSM, eDRX	PSM, eDRX
Duplex	Half	Full/Half
Complexity relative to LTE	10%	20-25%

eMTC coexists with LTE, while NB-IoT can coexist with LTE or be deployed alone

Frame structure similar to LTE but the max system bandwidth is much lower 180 KHz as opposed to 20 MHz

0.5 ms

Each NB-IoT/eMTC carrier can support 10000x devices per cell

- App.1 models a secure information exchange and uses 4 payloads
- App.2 models a mobile autonomous reporting with a tx payload of 128 or 256 bytes uplink and 29 bytes ack downlink

NB-IoT enhances coverage by using transmission repetitions

- 2x repetitions translates into 3dB coverage gain
- 2x repetitions results in 0.5x speed and 2x latency

Cellular IoT has two mechanism to help devices conserving battery power

Power Saving Mode (PSM)

- **UE** initiated mechanism
- Akin to power off but the UE remain registered

Extended Discontinuous Reception (eDRX) transfer

- Negotiated upon attachment
- The UE shuts off its receiver during eDRX
- Up to 3 hours

GSMA. NB-IOT DEPLOYMENT GUIDE to Basic Feature set Requirements April 2018

Early measurements of pilot NB-IoT commercial deployments

Measurements show that deployments meet expectations to a large extent

Assuming that we are using a CR2032 battery with 235 mAh capacity and 128 bytes payload and 6 activity periods per day

Total Load during transmission (mA)	Life time (years)
300 mA	~17
Up to 1500 mA	~10

Initial measurements indicate that delays may go well beyond the 10s limit

NB-IoT faces a number of challenges including complexity and methods for KPI evaluation

- Large parameter space
 - PSM, eDRX
 - Repetitions
 - Carrier bandwidth
- Diverse use cases with different SLA requirements
 - Low traffic volumes
 - New metrics are needed for describing reliability

Key to the realization of 5G vision is the slicing the network on a per service basis

A generic framework for 5G networks

Management and Orchestration Entity (MANO) - I

- It comprises three parts:
 - NFV Orchestrator
 - VNF Manager
 - Virtualized Infrastructure Manager
- Translates uses cases and models into services and slices:
 - VNF instantiation
 - VNF chaining
 - Service life cycle management

Management and Orchestration Entity (MANO) - II

Realizing E2E slicing involves several trade-offs (I) ISO-OSI Protocol layers

Realizing E2E slicing involves several trade-offs (II)

- How to virtualize radio resources?
 - Dedicated vs shared
- What is the proper network function granularity?
 - monolithic vs composable?
- How to describe services?
 - Human readable vs non-human readable

There is no agreement on how to virtualize the RAN

Fine grained function allow for flexible service composition at the expense of increased complexity

The MANO entity is still in the conceptual phase

A number of issues must be resolved before implementing E2E slicing fully

- Dynamic and fine-grained spectrum sharing based RAN virtualization
 - Multi-RAT virtualization
 - RAN as a service
- Frameworks and standards for defining granular network functions
- Adaptive and dynamic management and orchestration plane
 - Integrating measurements and control
 - Anticipatory and predictive analytics

5G vision

5G realization

Challenging use cases: The smart grid as an example

Unlike the traditional power grid, the smart grid is dependent on distributed control

Khan, Athar Ali, Mubashir Husain Rehmani, and Martin Reisslein. "Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols." IEEE Communications Surveys & Tutorials 18.1 (2016): 860-898.

Distribution automation within NANs is arguably the focal point of the smart grid

Kalalas, Charalampos, Linus Thrybom, and Jesus Alonso-Zarate. "Cellular communications for smart grid neighborhood area networks: A survey." *IEEE Access* 4 (2016): 1469-1493.

Distribution automation functionalities require reliable interactions between IEDs

- Distributed control and protection
 - Time critical control messaging
 - Fault identification
- Wide-area monitoring system
 - Combine data from Phasor Measurement units
- Real time monitoring of distribution equipment for example capacitor banks, re-closers and switches

Reliability

Protection

The smart grids communications feature diverse requirements

Kuzlu, Murat, Manisa Pipattanasomporn, and Saifur Rahman. "Communication network requirements for major smart grid applications in HAN, NAN and WAN." Computer Networks 67 (2014): 74-88.

A meta-requirement is that the interdependence should not increase chances of cascades

NB-IoT is already being considered for connecting smart meters

Portugal

Belgium

Measurement nodes spread across Norway

About 100 active stationary measurement nodes

Multi-homed to all major Norwegian MBB operators

Operational since July 2013

LTE networks do not ensure a consistent low delay < 50ms even when stationary

Although LTE networks offer high availability, they do not meet the smart grid requirements

Elmokashfi, Ahmed, Dong Zhou, and Džiugas Baltrünas. "Adding the next nine: An investigation of mobile broadband networks availability." In MobiCom. ACM, 2017.

Multihoming can help providing consistent delays and availability

Delays still need to reduced by an order of magnitude

Elmokashfi, Ahmed, Dong Zhou, and Džiugas Baltrünas. "Adding the next nine: An investigation of mobile broadband networks availability." In MobiCom. ACM, 2017.

5G NR scalable numerology can significantly reduce the air interface delay

0.5msec sub-frame results in approximately 4msec uplink delay

Lien, Shao-Yu, et al. "5G new radio: Waveform, frame structure, multiple access, and initial access." IEEE communications magazine 55.6 (2017): 64-71.

Supporting extreme requirements necessitates an end-to-end consideration

Supporting extreme requirements necessitates an end-to-end consideration

Service placement is central to reliably reducing delay

RAN latency 10msec

RAN latency 1msec

Multi-homing can help relaxing reliability requirements on individual paths

Single path reliability	Path Redundancy	Overall Reliability
90.000%	6	99.999900%
99.000%	3	99.999900%
99.900%	2	99.999900%
99.990%	2	99.999999%
99.999%	2	100.00000%

- Inherent tradeoff between resource efficiency and added reliability
- Informed selective duplication can boost reliability and constrain resource usage
 - Duplications during handover
 - Duplications upon interference/congestion detection

There is a need to evaluate different approaches to redundancy

5G vision is very ambitious. The main blocks are being worked out, but key challenges remain

There is a need for building adaptive, carrier grade, infrastructure agnostic VNFs

- To fully realize dynamic slicing, the MANO must go beyond the basic instantiation of VNFs
- Supporting extreme requirements mandates taking an E2E approach to improving reliability

